Ecological Engineering Laboratory (EEL)


Jaehyun's work is selected as an outstanding project by Korea Forest Service
Jaeyoung is joining our lab as a Master's student in September - Welcome!
Hojeong's paper re. CO2 emissions in Qinghai-Tibet is accepted in Cryosphere
Wahida is joining us as an NRF Int'l Fellow in October - Welcome back!


Research Interests


  1. Effects of elevated CO2, temperature increase and water-level drawdown on wetland ecosystems
  2. CH4 dynamics in ecosystems including both CH4 production and oxidation
  3. Designing of wetlands with maximal carbon sequestration
  4. Carbon decomposition in tundra & tropical peatlands


  1. N removal by constructed wetlands
  2. Influences of stream restoration on biogeochemical processes


  1. Relationship between microbial properties and ecosystem process rates
  2. Development of new molecular tools to assess microbes in the environment

Current Projects

해양수산 환경기술 개발사업, 해양수산부 (MOF)

국내 블루카본 정보시스템 구축 및 평가관리기술 개발

'Blue-Carbon' estimation in coastal wetlands in Korea

2019-2021년, 1.5억원 (123,000 USD)

신 국가간 협력기반 조성사업, 한국연구재단 (KRF)

이탄습지 복원-보존을 이용한 기후변화대응 지구공학기술 개발

Development to geo-engineering technology by restoration & reservation of peatlands

2020-2021, 2억원 (165,000 USD)

국가 간 협력기반 조성사업, 한국연구재단 (KRF)

중동 맹그로브 및 연안 해양 미생물의 생태 및 기후변화 영향 평가 연구

Microbial ecology and climate change impacts of mangrove and coastal ecosystems in the Middle East

2019-2020, 4천만원 (33,000 USD)

학문균형발전 (보호연구), 한국연구재단 (KRF)

국내 고유 습지 생태계의 토양 미생물 군집구조 및 조절인자 규명

Microbial community structures and their regulating factors of pristine wetland ecosystems in Korea

2020-2023, 3.6억원 (296,000 USD)


picture of Professor Hojeong Kang (강호정)
Hojeong Kang (강호정) Professor



  • September 2007 – To date. Professor, School of Civil and Environmental Engineering, Yonsei University, Korea.
  • September 2013 – August 2014. Visiting Scholar, School of Civil and Environmental Engineering, Princeton University, USA.
  • March 2001 – August 2007. Assistant & Associate Professor, Department of Environmental Science and Engineering, Ewha Womans University, Korea.
  • May 1999 – February 2001. Postdoctoral Research Associate (Center for Limnology) & Guyer Postdoctoral Research Fellow (Department of Zoology), University of Wisconsin, Madison, USA


  • September 1995 - March 1999. PhD. School of Biological Sciences, University of Wales, Bangor, United Kingdom. Dissertation: The significance of enzyme activities in wetland biogeochemistry (Supervisor: Professor Chris Freeman).
  • March 1993 - February 1995. MCP (Master in City Planning). Graduate School of Environmental Studies, Seoul National University, Korea. Thesis: Effects of excess nitrogen on soil enzyme activities and chemical properties in a sandy-loamy soil (Supervisor: Professor Dowon Lee).
  • March 1986 - February 1990. BSc. Department of Microbiology, Seoul National University, Korea.

Academic Services

  • Ecological Engineering, Associate Editor (2016-To date)
  • Micorbial Ecology, Editorial board member (2014-To date)
  • Pedosphere, Editorial board member (2011-To date)
  • Ecosystem Services, Editorial board member (2012-To date)
  • Journal of Microbiology, Associate editor (2008-2009)
  • Journal of Environmental Engineering Research, Associate editor (2007-2010)
  • Society of Wetland Scientists, Member, Asian Chapter Korean delegate
  • 한국공학교육학회지, 편집위원장 (2011-2012)


  • 학술상, 2019, 한국습지학회
  • 대통령표창 2017, 대한민국
  • 우수논문상 2015, 대한환경공학회
  • 우수연구업적교수상. 2014/2013, 연세대학교
  • 대한민국 과학기술한림원 준회원, 2011
  • 제 4회 여천생태학상, 2011.08
  • 제 21회 과학기술우수논문상, 2011.07, 한국과학기술단체총연합회
  • 우수강의 교수상, 2013/2012/2011/2008, 연세대학교
  • 학회장표창, 2010, 대한토목학회
  • 영어강의 우수교원상, 2009, 연세대학교
  • 우수논문상, 2009, 한국습지학회
  • 학술상, 2009, 한국습지학회
  • 공로상, 2009, 대한환경공학회


서주영 (Juyoung Seo) Postdoc / PhD Yonsei Univ. [on maternity leave]

Impacts of climate change on soil carbon and GHG flux in Arctic ecosystem

周雪 (Xue Zhou) Postdoc (NRF Int'l Fellow) / Prof. Hohai Univ.

Molecular analysis of microbial communities in soils

김진현 (Jinhyun Kim) Postdoc (NRF Fellow) / PhD Yonsei Univ.

Methanogenesis and blue carbon in coastal wetland soils

이재현 (Jaehyun Lee) PhD candidate / BS Dongkook Univ.

Methane oxidation in forest floors of different vegetation types

윤정은 (Jeongeun Yun) PhD student (Global PhD Fellow) / BS Yonsei Univ.

Warming effects on enzyme activites in Arctic soils

양예랑 (Yerang Yang) MS-PhD integrated student / BS Chungang Univ.

Microbial ecology of artificial and urban ecosystems

유재영 (Jaeyoung YOO) MS student / BA Yonsei Univ.

Changes in ecosystem services by civil engineering works

김희경 Staff

Lab manager



  • 김선영 (2007) 국립환경과학원
  • 송근예 (2009) Washington State University, USA, Research Scientist
  • 장인영 (2009) 국립생태원
  • Vo Nguyen Xuan Que (2014) Lecturer, Hochimin City University of Technology
  • 서주영 (2018) 연세대학교 박사 후 연구원
  • 김진현 (2019) 연세대학교 박사 후 연구원


  • 김하련 (2003) 해양생물자원관 [University of Florida, USA, PhD]
  • 박은영 (2004) 철도기술연구원
  • 강수진 (2004) 한국건설기술연구원
  • 박순영 (2006) 고양시 기후대기과
  • 김영선 (2008) 한국건설기술연구원 [University of Bayreuth, Germany, PhD]
  • 이지애 (2008) 국립환경과학원
  • 이상미 (2008) 한국건설기술연구원
  • 김영주 (2010) 한국건설기술연구원
  • 이지은 (2010) 한국국제협력단(KOICA)
  • 지윤환 (2012) 현대건설
  • 권민정 (2012) LSCE, France [Max Planck Institute, Germany, PhD]
  • 정민곤 (2013) Michigan State University 박사과정
  • 이한송 (2014) 삼성물산
  • 김도현 (2014) 한국건설기술연구원
  • 김보옥 (2015) 수자원공사
  • 이시훈 (2015) 바인그룹
  • 이현진 (2016) 삼성전자
  • Gaukhar Meldebekova (2017) Newcastle University, UK 박사과정
  • 고종민 (2020)


  • 이승훈 박사 (현) Vice-President, GENUV Inc.
  • 채남이 박사 (현) 고려대학교 연구교수
  • 김성현 박사 (현) Smithsonian Environmental Research Center 연구원, USA
  • 정석희 박사 (현) 전남대학교 환경에너지공학과 교수
  • Saadat Malghani (현) Associate Professor, Nanjing Forestry University, China
  • 변채호 (현) 국립안동대 생명공학부 교수

Visiting Scholars

  • Dr. Wahida Ghiloufi (University of Sfax, Tunisia) - NRF recipient
  • Dr. Doongar Ram Chaudhary (Central Salt and Marine Chemicals Research Institute, India) - Brain Pool Korea recipient

Visiting Students

  • Ms. Lucile Vega (Ecole Nationale Supérieure en Génie des Technologies Industrielles, France), 2018
  • Dr. Mélina Guêné-Nanchen (Université Laval, Canada), 2017
  • Ms. Roos Plak (University of Utrecht, The Netherlands), 2015
  • Dr. Sina Berger (University of Bayreuth, Germany) 2010
  • Mr. Chris Cooley (The Ohio State University, USA), 2009


picture of Professor Chris Freeman Chris Freeman Professor

University of Wales, Bangor, UK

picture of Professor Weixin Ding Weixin Ding Professor

Institute of Soil Science, CAS, China

picture of Professor 이승훈 (Seung-Hoon Lee) 이승훈 (Seung-Hoon Lee) Vice President

Shine Biopharma, Seoul, Korea

picture of Professor Doongar R Chaudhary Doongar R Chaudhary Scientist

Central Salt & Marine Chemicals Research Institute, Bhavnagar, India

picture of Professor Wahida Ghiloufi Wahida Ghiloufi Postdoc

University of Sfax, Tunisia

picture of Professor Saadat Malghani Saadat Malghani Professor

Nanjing Forestry University, China

picture of Professor 변채호 (Chaeho Byun) 변채호 (Chaeho Byun) Professor

Andong National University, Korea


International Journals

112. Kim, J., Rochfort, L., Hugron, S., Alqulaiti, Z., Dunn, C., Pouliot, R., Jones, T., Freeman, C. & Kang, H. Water table flucturation in peatlands facilitates fungal proliferation, impedes Sphagnum growth and accelerates decomposition (Under review)
111. Kim, J., Lee, J., Yang, Y., Yun, J., Ding, W., Yuan, J., Khim, J.S., Kwon, B-O. & Kang, H. Microbial decomposition of soil organic matter was determined by edaphic characteristics of mangrove forests in East Asia (Under review)
110. Lin, Y., Yuan, J., Liu, D., Kang, H., Freeman, C., Ye, G. & Ding, Y. Reconciling divergent responses of wetland methane emissions to elevated atmospheric CO2 (Under review)
109. Byun, C., Choi, H. & Kang, H. Effects of cutting and sowing seeds of native species on invasion by giant ragweed and plant diversity in a field experiment. (Under review)
108. Yang, Y, Lee, S-H., Jang, I. & Kang, H. Soil bacterial community structures across biomes in artificial ecosystems. Ecological Engineering (In revision)
107. Sim, S., Jeong, S., Park, H., Park, C., Kwak, K-H., Lee, S-B., Kim, C.H., Lee, S., Chang, J.S., Kang, H. & Woo, J-H. Co-benefit potential of urban CO2 and air quality monitoring: a study on the first mobile campaign and building monitoring experiments in Seoul during the winter. Atmospheric Pollution Research (Accepted)
106. Wang, J., Wu, Q., Yuan, Z. & Kang, H. (2020) Freeze-thaw processes of active layer regulate soil respiration of alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. The Cryosphere (Accepted)
105. Ko, J., Lee, J. & Kang, H. (2020) Effects of micro-topography on N2O emission from sediments in temperate streams. Ecological Engineering (Accepted)
104. Kim, J., Lee, J., Yoon, J., Yang, Y., Ding, X., Yuan, J. & Kang, H. (2020) Mechanisms of enhanced methane emission due to introduction of Spartina anglica and Phragmites australis in a temperate tidal salt marsh. Ecological Engineering 153: Article 105905
103. Byun, C., Kim, S-Y. & Kang, H. (2020) Elevated concentrations of CO2 and nitrogen alter DOC release and soil phenolic content in wetland microcosm. Ecoscience.
102. Byun, C., Oh, M., Lee, E. J. & Kang, H. (2020) Seed density is as important determinant as limiting similarity, diversity effect, and propagule pressure in a plant invasion. Ecological Engineering 144: 105712
101. Kim, J., Chaudhary, D. R. & Kang, H. (2020) Nitrogen addition differently alters GHGs production and soil microbial community of tidal salt marsh soil depending on the types of halophyte. Applied Soil Ecology.
100. Kim, S-Y., Freeman, C., Lukac, M., Lee, S-H., Kim, S. & Kang, H. (2020) Elevated CO2 and high salinity enhance the abundance of sulfate reducers in a salt marsh ecosystem. Applied Soil Ecology 147: 103386
099. Kim, J., Chaudhary, D., Lee, J., Byun, C., Ding, W., Kwon, B-O., Khim, J. S. & Kang, H. (2020) Microbial mechanism for enhanced methane emission in deep soil layer of Phragmites-introduced tidal marsh. Environment International 134: 105251
098. Malghani, S., Yoo, G., Giesemann, A., Well, R. & Kang, H (2019) Combined application of organic manure with urea does not alter the dominant biochemical pathway producing N2O from urea treated soil. Biology and Fertility of Soils 56: 331–343.
097. Yuan J., Xiang, J., Liu, D., Kang, H., He, T., Kim, S., Lin, Y., Freeman, C. & Ding, W. (2019) Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nature Climate Change 9: 318-322
096. Ghiloufi, W., Seo, J., Kim, J., Chaieb, M. & Kang, H. (2019) Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem. Microbial Ecology 77: 201-216
095. Kang, H., Kwon, M-J., Kim, S., Lee, S-H., Jones, T. G., Johncock, A.C., Haraguchi, A. & Freeman, C. (2018) Biologically driven DOC release from peatlands during recovery from acidification. Nature Communications 9: 3807.
094. Malghani, S., Kim, J., Lee, S-H., Yoo, G. & Kang, H. (2018) Application of two contrasting rice residue based biochars triggered gaseous loss of nitrogen under denitrification favoring conditions: Short term AIT based study. Applied Soil Ecology 127: 112-119.
093. Kim, S., Kang, J., Megonigal, J. P., Kang, H., Seo, J. & Ding, W. (2018) Impacts of Phragmites australis invasion on soil enzyme activities and methanogens of tidal marshes. Microbial Ecology 76: 782-790.
092. Chaudhary, D. R., Kim, J., Kang, H. (2018) Influences of different halophyte vegetation on soil microbial community at temperate salt marsh. Microbial Ecology 75: 729-738.
091. Chaudhary, D. R., Seo, J., Kang, H., Rathore, A. P. & Jha, Bhavanath. (2018) Seasonal variation in natural abundance of δ13C/δ15N in Salicornia brachiata Roxb. populations from a coastal area of India. Isotopes in Environmental & Health Studies. 54(2), 209-224
090. Kim, J., Yoo, G., Kim, D., Ding, W. & Kang, H. (2017) Combined application of biochar and slow-release fertilizer reduces methane emissions but enhance rice yield by different mechanism. Applied Soil Ecology 117-118, 57-62.
089. Lee, S-H., Megonigal, P. J., Langley, A. J. & Kang, H. (2017) Elevated CO2 and nitrogen addition affect the microbial abundance but not the community structure of salt marsh ecosystems. Applied Soil Ecology 117-118, 129-136.
088. Jeong, T-U., Jung, K-W., Choi, B. H., Kang, H. Lee, H-J. & Ahn, K-H. (2017) Phosphate adsorption from aqueous solution by Laminaria japonica derived biochar-calcium alginate beads in a fixed-bed column: Experiments and prediction of breakthrough curves. Environmental Progress & Sustainable Energy. 36(5),1365-1373.
087. Lee, S-H., Megonigal, P. J. & Kang, H. (2017) How do elevated CO2 and nitrogen addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Microbial Ecology 74(3), 670-680.
086. Jin, H., Yoon, T. K., Lee, S. H., Kang, H., Im, J. & Park, J. H. (2016) Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environmental Research Letters, 11(12), 124003.
085. Lee, S. H. & Kang, H. (2016) Elevated CO2 causes a change in microbial communities of rhizosphere and bulk soil of salt marsh system. Applied Soil Ecology, 108, 307-314.
084. Kim, S., Lee, S., McCormick, M., Kim, J. G. & Kang, H. (2016) Microbial community and greenhouse gas fluxes from abandoned rice paddies with different vegetation. Microbial Ecology, 72(3), 692-703.
083. Jung, K. W., Jeong, T. U., Kang, H. J., Chang, J. S. & Ahn, K. H. (2016) Preparation of modified-biochar from Laminaria japonica: Simultaneous optimization of aluminum electrode-based electro-modification and pyrolysis processes and its application for phosphate removal. Bioresource Technology, 214, 548-557.
082. Jung, K. W., Jeong, T. U., Kang, H. J. & Ahn, K. H. (2016) Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresource Technology, 211, 108-116.
081. Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., ... & Foulquier, A. (2016) Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?. Frontiers in Microbiology, 7, 214.
080. Lee, S-H. & Kang, H. (2016) The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem. Applied Microbiology and Biotechnology, 100(4), 1999-2010.
079. Bang, S., Choi, J. W., Cho, K., Chung, C., Kang, H. & Hong, S. W. (2016) Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads. Chemical Engineering Journal, 288, 525-531.
078. Chae, N., Kang, H., Kim, Y., Hong, S. G., Lee, B. Y. & Choi, T. (2016) CO2 efflux from the biological soil crusts of the High Arctic in a later stage of primary succession after deglaciation, Ny-Ålesund, Svalbard, Norway. Applied Soil Ecology, 98, 92-102.
077. Yuan, J., Ding, W., Liu, D., Kang, H., Xiang, J. & Lin, Y. (2016) Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Scientific Reports, 6, 18777.
076. Lin, Y., Liu, D., Ding, W., Kang, H., Freeman, C., Yuan, J. & Xiang, J. (2015) Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Applied Microbiology and Biotechnology, 99(24), 10779-10791.
075. Kim, J., Lee, S. H., Jang, I., Jeong, S. & Kang, H. (2015) Can abundance of methanogen be a good indicator for CH4 flux in soil ecosystems?. Environmental Geochemistry and Health, 37(6), 1007-1015.
074. Min, K., Freeman, C., Kang, H. & Choi, S. U. (2015) The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. BioMed Research International, 2015, 825098.
073. Seo, J., Jang, I., Jung, J. Y., Lee, Y. K. & Kang, H. (2015) Warming and increased precipitation enhance phenol oxidase activity in soil while warming induces drought stress in vegetation of an Arctic ecosystem. Geoderma, 259, 347-353.
072. Choi, B., Choi, S. U. & Kang, H. (2015) Transferability of Monitoring Data from Neighboring Streams in a Physical Habitat Simulation. Water, 7(8), 4537-4551.
071. Chung, M.G. & Kang, H (2015) Assessment of biodiversity and ecosystem services for conservation strategies in coastal wetlands. PLoS One 10(7): e0133856.
070. Lee, S. H., Kim, S. Y., Ding, W. & Kang, H. (2015) Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Applied Microbiology and Biotechnology, 99(12), 5295-5305.
069. Song, H. K., Sonkaria, S., Khare, V., Dong, K., Lee, H. T., Ahn, S. H., ... & Adams, J. M. (2015) Pond Sediment Magnetite Grains Show a Distinctive Microbial Community. Microbial Ecology, 70(1), 168-174.
068. Song, K., Lee, J., Cha, C. J. & Kang, H. (2015) Effects of Phragmites invasion on soil microbial activity and structure in a brackish marsh. Plant and Soil, 392(1), 45-56.
067. Yuan, J., Ding, W., Liu, D., Kang, H., Freeman, C., Xiang, J. & Lin, Y. (2015) Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21(4), 1567-1580.
066. Kim, S., Kim, Y., Kim, Y., Kim, K., Wang, S., Kang, H., & Yoo, B. (2014) Effects of planting method and nitrogen addition on Sphagnum growth in microcosm wetlands. Paddy and Water Environment, 12(1), 185-192.
065. Jung, S., Kim, Y-J. & Kang, H. (2014) Investigation of denitrification rates and their controlling factors in streams of the Han-river with different land use patterns. Pedosphere 24: 516-528.
064. Jung, S. P., & Kang, H. (2014) Assessment of microbial diversity bias associated with soil heterogeneity and sequencing resolution in pyrosequencing analyses. Journal of Microbiology, 52(7), 574-580.
063. Jung, S.P., Cheong, Y., Yim, G., Ji, S. & Kang, H. (2014) Performance and bacterial communities of successive alkalinity producing systems (SAPSs) in passive treatment processes treating mine drainages differing in acidity and metal levels. Environmental Science and Pollution Research 21: 3722-3732.
062. Seo, J., Jang, I., Gebauer, G., & Kang, H. (2014) Abundance of methanogens, methanotrophic bacteria, and denitrifiers in rice paddy soils. Wetlands, 34(2), 213-223.
061. Jung, S. P., Yoon, M. H., Lee, S. M., Oh, S. E., Kang, H., & Yang, J. K. (2014) Power generation and anode bacterial community compositions of sediment fuel cells differing in anode materials and carbon sources. Int. J. Electrochem. Sci, 9, 315-326.
060. Park, J. H., Meusburger, K., Jang, I., Kang, H., & Alewell, C. (2014) Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 69, 382-392.
059. Berger, S., Jang, I., Seo, J., Kang, H., & Gebauer, G. (2013) A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochemistry, 115(1), 317-332.
058. Kim, M., Heo, E., Kang, H., & Adams, J. (2013) Changes in soil bacterial community structure with increasing disturbance frequency. Microbial Ecology, 66(1), 171-181.
057. Song, K., Park, Y. S., Zheng, F., & Kang, H. (2013) The application of Artificial Neural Network (ANN) model to the simulation of denitrification rates in mesocosm-scale wetlands. Ecological informatics, 16, 10-16.
056. Vo, N. X. Q., & Kang, H. (2013) Regulation of soil enzyme activities in constructed wetlands under a short-term drying period. Chemistry and Ecology, 29(2), 146-165.
055. Kwon, M. J., Haraguchi, A., & Kang, H. (2013) Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biology and Biochemistry, 60, 33-44.
054. Lee, S. H., Jang, I., Chae, N., Choi, T., & Kang, H. (2013) Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils. Microbial ecology, 65(2), 405-414.
053. Berger, S., Jung, E., Köpp, J., Kang, H., & Gebauer, G. (2013) Monsoon rains, drought periods and soil texture as drivers of soil N2O fluxes–Soil drought turns East Asian temperate deciduous forest soils into temporary and unexpectedly persistent N 2 O sinks. Soil Biology and Biochemistry, 57, 273-281.
052. Kim, S., Hong, S. H., Cho, K., Lee, I., Yoo, G., & Kang, H. (2012) Effects of elevated CO2 and Pb on the microbial community in the rhizosphere of Pinus densiflora. Journal of Microbiology, 50(6), 895-901.
051. Yoo, G., & Kang, H. (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. Journal of Environmental Quality, 41(4), 1193-1202.
050. Lee, S. H., Kim, S. Y., & Kang, H. (2012) Effects of elevated CO2 on communities of denitrifying bacteria and methanogens in a temperate marsh microcosm. Microbial Ecology, 64(2), 485-498.
049. Kim, S. Y., Freeman, C., Fenner, N., & Kang, H. (2012) Functional and structural responses of bacterial and methanogen communities to 3-year warming incubation in different depths of peat mire. Applied Soil Ecology, 57, 23-30.
048. Song, K., Kang, H., Zhang, L., & Mitsch, W. J. (2012) Seasonal and spatial variations of denitrification and denitrifying bacterial community structure in created riverine wetlands. Ecological Engineering, 38(1), 130-134
047. Min, K., Kang, H., & Lee, D. (2011) Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12), 2461-2469
046. Kim, H., & Kang, H. (2011) The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils. The Journal of Microbiology, 49(3), 369-375.
045. Kim, S., & Kang, H. (2011) Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water, Air, & Soil Pollution, 219, 365-375.
044. Jang, I., Lee, S., Zoh, K. D., & Kang, H. (2011) Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biology and Biochemistry, 43(3), 620-627.
043. Lee, S. H., Kim, C. G., & Kang, H. (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microbial Ecology, 61(3), 646-659.
042. White, R. A., Freeman, C., & Kang, H. (2011) Plant-derived phenolic compounds impair the remediation of acid mine drainage using treatment wetlands. Ecological engineering, 37(2), 172-175.
041. Song, K., Lee, S. H., & Kang, H. (2011) Denitrification rates and community structure of denitrifying bacteria in newly constructed wetland. European Journal of Soil Biology, 47(1), 24-29.
040. Kim, D. G., Park, J., Lee, D., & Kang, H. (2011) Removal of Nitrogen and Phosphorus from Effluent of a Secondary Wastewater Treatment Plant Using a Pond–Marsh Wetland System. Water, Air, & Soil Pollution, 214, 37-47.
039. Park, S., & Kang, H. (2010) Impact of invasive plant and environmental conditions on denitrification potential in urban riparian ecosystems. Chemistry and Ecology, 26(5), 353-360.
038. Song, K., Lee, S. H., Mitsch, W. J., & Kang, H. (2010) Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biology and Biochemistry, 42(10), 1721-1727.
037. Choi, M. J., Bae, J. Y., Kim, K. Y., Kang, H., & Cha, C. J. (2010) Brevibacillus fluminis sp. nov., isolated from sediment of estuarine wetland. International Journal of Systematic and Evolutionary Microbiology, 60(7), 1595-1599.
036. Lee, S. H., Lee, H. J., Kim, S. J., Lee, H. M., Kang, H., & Kim, Y. P. (2010) Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Science of The Total Environment, 408(6), 1349-1357.
035. Kang, H., & Freeman, C. (2009) Soil enzyme analysis for leaf litter decomposition in global wetlands. Communications in Soil Science and Plant Analysis, 40, 3323-3334.
034. Kang, H., Kang, S., & Lee, D. (2009) Variations of soil enzyme activities in a temperate forest soil. Ecological Research, 24(5), 1137-1143.
033. Kang, H., Lee, S. H., Lee, S. M., & Jung, S. (2009) Positive relationships between phenol oxidase activity and extractable phenolics in estuarine soils. Chemistry and Ecology, 25(2), 99-106.
032. Choi, J. H., Kang, H., & Park, S. S. (2009) Comparison of enzyme activities in vegetated and nonvegetated sediments. Journal of Environmental Engineering, 135(5), 299-305.
031. Park, N., Lee, J., Chon, K., Kang, H., & Cho, J. (2009) Investigating microbial activities of constructed wetlands with respect to nitrate and sulfate reduction. Desalination and Water Treatment, 1, 172-179.
030. Cho, I. H., Choi, K., Kang, H., & Zoh, K. D. (2008) Risk assessment before and after solar photocatalytic degradation of BTEX contaminated groundwater at a gas station site in Korea. Environmental Progress, 27(4), 447-459.
029. Kim, S. Y., Lee, S. H., Freeman, C., Fenner, N., & Kang, H. (2008) Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands. Soil Biology and Biochemistry, 40(11), 2874-2880.
028. Kim, S. Y., & Kang, H. (2008) Effects of elevated CO2 on below-ground processes in temperate marsh microcosms. Hydrobiologia, 605(1), 123-130.
027. Kang, H., & Freeman, C. (2007) Interactions of marsh orchid (Dactylorhiza spp.) and soil microorganisms in relation to extracellular enzyme activities in a peat soil. Pedosphere, 17(6), 681-687.
026. Song, K. Y., Zoh, K. D., & Kang, H. (2007) Release of phosphate in a wetland by changes in hydrological regime. Science of the Total Environment, 380(1), 13-18.
025. Jang, I., Lee, S., Hong, J. H., & Kang, H. (2006) Methane oxidation rates in forest soils and their controlling variables: a review and a case study in Korea. Ecological Research, 21(6), 849-854.
024. Kang, H., & Lee, D. (2005) Inhibition of extracellular enzyme activities in a forest soil by additions of inorganic nitrogen. Communications in Soil Science and Plant Analysis, 36, 2129-2135.
023. Kang, H., Kim, S. Y., Fenner, N., & Freeman, C. (2005) Shifts of soil enzyme activities in wetlands exposed to elevated CO 2. Science of the Total Environment, 337(1), 207-212.
022. Kim, B. S., Oh, H. M., Kang, H., & Chun, J. (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol, 43, 144-151.
021. Kang, H., Freeman, C., & Chun, J. (2005) N-Acetylglucosaminidase activities in wetlands: a global survey. Hydrobiologia, 532(1-3), 103-110.
020. Kang, H., & Stanley, E. H. (2005) Effects of levees on soil microbial activity in a large river floodplain. River Research and Applications, 21(1), 19-25.
019. Freeman, C., Kim, S-Y., Lee, S-H, & Kang, H-J. (2004) Effects of elevated atmospheric CO2 concentrations on soil microorganisms. Journal of Microbiology 42, 267-277.
018. Freeman, C., Ostle, N. J., Fenner, N., & Kang, H. (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36(10), 1663-1667.
017. Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., ... & Hudson, J. (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430, 195-198.
016. Kim, B. S., Oh, H. M., Kang, H., Park, S. S. & Chun, J. (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. Journal of Microbiology and Biotechnology, 14(1), 205-211.
015. Kang, H. J., An, K. G., & Kim, D. S. (2004) Utilization of steel slag as an adsorbent of ionic lead in wastewater. Journal of Environmental Science and Health, Part A, 39(11-12), 3015-3028.
014. Kang, H., Stanley, E. H., & Park, S. S. (2003) A sensitive method for the measurement of ammonium in soil extract and water. Communications in Soil Science and Plant Analysis, 34, 2193-2201.
013. Lee, D., Yook, K. H., Lee, D., Kang, S., Kang, H., Lee, H. J. & Lee, K. H. (2002) Changes in annual CO2 fluxes estimated from inventory data in South Korea. Science in China 45, 87-96.
012. Kang, H., & Freeman, C. (2002) The influence of hydrochemistry on methane emissions from two contrasting northern wetlands. Water, Air, and Soil Pollution, 141(1), 263-272.
011. Kang, S., Kang, H., Ko, D., & Lee, D. (2002) Nitrogen removal from a riverine wetland: a field survey and simulation study of Phragmites japonica. Ecological Engineering, 18(4), 467-475.
010. Freeman, C., Nevison, G. B., Kang, H., Hughes, S., Reynolds, B., & Hudson, J. A. (2002) Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biology and Biochemistry, 34(1), 61-67.
009. Kang, H., Freeman, C., & Ashendon, T. W. (2001) Effects of elevated CO 2 on fen peat biogeochemistry. Science of the Total Environment, 279(1), 45-50.
008. Freeman, C., Ostie, N., & Kang, H. (2001) An enzymic ‘latch’on a global carbon store—a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149.
007. Kang, H-J., & Freeman, C. (1999) Phosphatase and arylsulphatase activities in wetland soils - Annual variation and controlling factors. Soil Biology & Biochemistry 31: 449-454
006. Kang, H-J., & Freeman, C. (1998) Measurement of cellulase and xylosidase activities in peat using a sensitive fluorogenic compound assay. Communications in Soil Science and Plant Analysis 29: 2769-2774
005. Kang, H., Freeman, C., Lee, D., & Mitsch, W. J. (1998) Enzyme activities in constructed wetlands: implication for water quality amelioration. Hydrobiologia, 368(1), 231-235.
004. Kang, H-J., Freeman, C., & Lock, M. A. (1998) Trace gas emission from a North Wales fen - Role of hydrochemistry and soil enzyme activity. Water, Air and Soil Pollution 105, 107-116.
003. Kang, H-J., & Lee, D. (1998) Changes of soil enzyme activities by simulated acid and nitrogen deposition. Chemistry and Ecology 14, 123-131.
002. Kang, H-J., Freeman, C., & Emmett, B. A. (1997) Effects of long term nitrogen additions on soil enzyme activities in a Sitka spruce forest. International Journal of Ecology and Environmental Sciences 23, 75-80
001. Kang, H., & Freeman, C. (1997) Measurement of phosphomonoesterase activity in wetland sediments: a sensitive method using HPLC and UV detection. Archiv für Hydrobiologie, 140(3), 411-417

Domestic Journals

Jung, S., Lee, S., Park, J., Seo, J., & Kang, H. (2017). Geostatistical Analysis of Soil Enzyme Activities in Mud Flat of Korea. Ecology and Resilient Infrastructure, 4(2), 93-96.
Kim, J., Jang, I., Lee, H., & Kang, H. (2015). Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type. Ecology and Resilient Infrastructure, 2(3), 247-254.
Vo, N. X. Q., Ji, Y., Van Doan, T., & Kang, H. (2014). Distribution of Inorganic Phosphorus Fractions in Sediments of the South Han River over a Rainy Season. Environmental Engineering Research, 19(3), 229-240.
Vo, N. X. Q., Van Doan, T., & Kang, H. (2014). Impoundments Increase Potential for Phosphorus Retention and Remobilization in an Urban Stream. Environmental Engineering Research, 19(2), 175-184.
Vo, N. X. Q., Lee, S. H., Van Doan, T., Jung, S. P., & Kang, H. (2014). Denitrification Potential and Denitrifier Abundance in Downstream of Dams in Temperate Streams. 미생물학회지, 50(2), 137-151.
정석희. (2013). 생물전기화학적 하폐수처리를 위한 미생물연료전지의 실용화. 한국도시환경학회지 제, 13(2), 93-100.
Chung, M. G., & Kang, H. (2013). A Review of Ecosystem Service Studies: Concept, Approach and Future Work in Korea. Journal of Ecology and Environment, 36(1), 1-9.
김영주, 권민정, & 강호정. (2012). 한강 지류 토지 이용 특성과 하천 내의 미지형에 따른 탈질량과 조절 인자. 한국습지학회지, 14(1), 139-146.
박순영, 김재근, & 강호정. (2012). 하변토양의 미생물체외효소활성에 미치는 칩입성 식물의 영향. 한국습지학회지 제, 14(1), 47-57.
서주영, & 강호정. (2012). 유역 내 토지이용도에 따른 N2O 배출양상. 대한환경공학회지, 34(2), 86-90.
한경희, 허준행, 윤일구, 이강택, & 강호정. (2012). 공학 분야의 윤리적 문제해결방법: 매트릭스 가이드. 공학교육연구, 15(1), 61-71.
Kim, S., Lee, I., & Kang, H. (2011). Effects of Pinus densiflora on soil chemical and microbial properties in Pb-contaminated forest soil. Journal of Ecology and Environment, 34(3), 315-322.
Kang, H. J., & Freeman, C. (2010). Review: Global Increases in Dissolved Organic Carbon in Rivers and Their Implications. 한국하천호수학회지, 43(4), 453-458.
Jang, I. Y., & Kang, H. J. (2010). Controlling environmental factors of soil enzyme activities at three altitudes on Mt. Jumbong. Journal of Ecology and Environment, 33(3), 223-228.
Jang, I., Lee, H., & Kang, H. (2010). The Response of Nitrogen Deposition to Methane Oxidation Availability and Microbial Enzyme Activities in Forest Soils. Environmental Engineering Research, 15(3), 157-161.
Jung, S. H., Lee, S. H., Park, S. S., & Kang, H. J. (2010). Effects of elevated CO 2 on organic matter decomposition capacities and community structure of sulfate-reducing bacteria in salt marsh sediment. Journal of Ecology and Environment, 33(3), 261-270.
서주영, 송근예, & 강호정. (2010). 수심의 정도와 식생의 유무에 따른 인공습지 토양 내 유기탄소와 질산염의 공간적 분포. 한국습지학회지, 12(2), 59-65.
Kim, S. H., Jung, S. H., Kang, H. J., & Lee, I. S. (2010). Effects of elevated CO 2 on growth of Pinus densiflora seedling and enzyme activities in soil. Journal of Ecology and Environment, 33(2), 133-139.
한경희, 박준홍, & 강호정. (2010). 공학과 젠더: 공학교육에 어떻게 적용할 것인가?; 여학생 공학교육 선도대학 (WIE) 사업 분석과 운영 경험을 중심으로.
김영주, & 강호정. (2009). 자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작. 한국습지학회지, 11(1), 123-130.
Freeman, C., Jang, I. Y., Zho, K. D., & Kang, H. J. (2008). Measuring phosphatase activity in peatland soils: Recent Methodological Advances. Environmental Engineering Research, 13(4), 165-168.
Vo, N. X. Q., Kang, H. J., & Park, J. H. (2007). Functional metagenomics using stable isotope probing: a review. Environmental Engineering Research, 12(5), 231-237.
Kim, S. Y., & Kang, H. J. (2007). Climate Effects on Greenhouse Gas Emissions and Microbial Communities in Wetlands. Korean Journal of Agricultural and Forest Meteorology, 9(3), 161-169.
Ju, E. J., Kim, J. G., Lee, Y. W., Lee, B. A., Kim, H., Nam, J. M., & Kang, H. J. (2006). Growth rate and nutrient content changes of Humulus japonicus. Journal of Ecology and Field Biology, 29, 433-440.
Choi, J. K., Kim, S. K., Kang, H. J., & Zoh, K. D. (2005). A Study on the Removal of TNT (2, 4, 6-trinitrotoluene) using Marsh and Pond Type Microcosm Wetland Systems. Journal of Korean Society of Environmental Engineers, 27(2), 198-205.
Lee, S. H., Kim, S., & Kang, H. (2004). Influence of Elevated $ CO_2 $ on Denitrifying Bacterial Community in a Wetland Soil. The Korean Journal of Microbiology, 40(3), 244-247.
Hong, S. K., Kang, H. J., Kim, E. S., Kim, J. G., Kim, C. H., Lee, E. J., ... & Ihm, B. S. (2004). Application of landscape ecology to ecological restoration. The Korean Journal of Ecology, 27(5), 311-323.
Kim, S. Y., & Kang, H. (2003). Effects of Elevated Atmospheric CO~ 2 on Wetland Plants: A Review. Korean Journal of Limnology, 36(4), 391-402.
Kang, H. J. (2002). Note: Sources and Variations of Extracellular Enzymes in a Wetland Soil. 한국하천호수학회지, 35(4), 326-330.
Kang, H. J., & Kim, S. Y. (2002). Articles: Variations of DOC and Phenolics in Pore-water of Peatlands. 한국하천호수학회지, 35(4), 306-311.
Kang, H., & Freeman, C. (2001). Impacts of Elevated CO~ 2 on Algal Growth, CH~ 4 Oxidation and N~ 2O Production in Northern Peatland. KOREAN JOURNAL OF LIMNOLOGY, 34(4), 261-266.


보전생물학 (월드사이언스, 2014)공저
생태학(교보문고,2012) 공역
와인에 담긴 과학 - In Vino Veritas (사이언스북스, 2012)
21세기 다윈혁명 (사이언스북스, 2009) 공저
멋진 신세계와 판도라의 상자 (문학과 지성사, 2009) 공저
생태공학 (청문각, 2008) 공역
과학글쓰기를 잘하려면 기승전결을 버려라 (이음, 2007)
다윈의 대답 3: 남자일과 여자일은 따로 있는가? (이음, 2007) 역서
지식의 통섭 (이음, 2007) 공저
경관생태학 (라이프사이언스, 2005) 공역
생태복원공학 (라이프사이언스, 2004) 공저
소리잃은 강 (지식공작소, 2001) 공역


Teaching Philosophy

  • To maximize implementation of the potentials of students
  • To facilitate interdisciplinary researches and self-motivated education


Title and description Code Credit


Civil and Environmental Engineering

This course aims

  1. to develop foundations for basic concepts in ecology and ecological engineering,
  2. to introduce recent development in ecological engineering, focusing on constructed wetlands and restoration ecology, and
  3. to understand the application of ecological ideas to environmental issues employing engineering approaches.
CEE3203 3


Integrated Science and Engineering (ISE), Team teaching

To expose junior students to indiviual research work

SED3001 3


Civil and Environmental Engineering, Graduate

This course is to share and discuss the up-to-date information about river and stream ecosystems. In particular, material cycles in relation to global climate change will be the center of the topics.

CEE8580 3

Useful Links

Yonsei Yscec

Yonsei Creative Education Community


Course Catalog of Yonsei University



Field Work
Conference & Seminar
2016 Homecoming Day
May 27, 2016
Host a seminar
Nov. 3, 2017
Cambridge Bay, Canada, (JUYOUNG SEO)
Tidal marsh in Suncheon Bay. Korea (JINHYUN KIM, JAEHYUN LEE)
Mangrove in Shenzhen. China (JINHYUN KIM)
Conference_INTECOL 2016. Changshu. China (JINHYUN KIM)
Conference_2017 AGU, New Orleans. USA (JINHYUN KIM)
Dec. 11, 2017
Seminar_Prof. Jenna Jambeck
June 18, 2018
Seminar_Prof. Jenna Jambeck
June 18, 2018
Seminar_Prof. Chris Freeman_Bangor Univ_UK
Sept. 27, 2018
Seminar_Prof. Chris Freeman_Bangor Univ_UK
Sept. 27, 2018
Coniferous forest in Jeju, Korea
May 24, 2018
Coniferous forest in Jeju, Korea
May 24, 2018
Coniferous forest in Jeju, Korea
May 24, 2018
Coniferous forest in Jeju, Korea (JAEHYUN LEE)
May 24, 2018
Coniferous forest in Jeju, Korea (JONGMIN KO)
May 24, 2018
Coniferous forest in Gawngneung, Korea (JAEHYUN LEE, LUCILE, JINHYUN KIM)
April 13, 2018
Coniferous forest in Gawngneung, Korea (SAADAT, LUCILE, JAEHYUN LEE, JINHYUN KIM)
April 13, 2018
Moist acidic tundra in Council, Alaska
Sept. 1, 2017
Moist acidic tundra in Council, Alaska
Sept. 1, 2017
Moist acidic tundra in Council, Alaska
Sept. 1, 2017
Article in Council, Alaska, USA (JAEHYUN LEE)
Sept. 1, 2017
2017 Homecoming Day
Conference_INTECOL, Beijing, China (JAEHYUN LEE)
Aug. 21, 2017
Conference_INTECOL, Beijing, China (JINHYUN KIM, JAEHYUN LEE)
Aug. 21, 2017
Moist acidic tundra in Council, Alaska (JAEHYUN LEE)
Moist acidic tundra in Council, Alaska (JAEHYUN LEE)
Sept. 19, 2016
Conference_INTECOL, Changsu, China (Prof. HOJEONG KANG)
Sept. 19, 2016
Conference_2017 AGU, New Orleans, USA (JAEHYUN LEE)
Dec. 11, 2017
2016 Year-end party
Mud flat in Ganghwado, Korea (JINHYUN KIM, JAEHYUN LEE)
March 18, 2019
Mud flat in Ganghwado, Korea (JINHYUN KIM)
March 18, 2019
Mud flat in Ganghwado, Korea (JAEHYUN LEE)
March 18, 2019
Mud flat in Ganghwado, Korea (JINHYUN KIM, JAEHYUN LEE)
March 18, 2019
Mud flat in Ganghwado, Korea (JINHYUN KIM)
March 18, 2019
Joint Seminar with Singapore N.Univ in Jan 2019(LEE JAE HYUN)
Jan. 28, 2019
Joint Seminar with Singapore N.Univ in Jan 2019(LEE JAE HYUN)
Jan. 28, 2019
ASM 2019 in Jun(LEE JAE HYUN)
June 19, 2019
ASM 2019 in Jun(LEE JAE HYUN)
June 19, 2019
2019 Home Comming Day
(2019) JH Kim's Ph.D Graduation Party
Sept. 4, 2019
Host speakers in Suncheon, Dr. Patrick Megonigal
Aug. 22, 2019
Sino-Korea Symposium (Oct 2019, Peking University)
Sino-Korea Symposium (Oct 2019, Peking University)
2019 Dec. AGU in USA
2019 Dec. AGU in USA
2019 Dec. AGU in USA
2019 Dec. AGU in USA
Jan. 21, 2020
Green tea farm in Jeju (2020, Apr)
April 16, 2020
Green tea farm in Jeju (2020, Apr)
April 16, 2020
Green tea farm in Jeju (2020, Apr)
April 16, 2020
Green tea farm in Jeju (2020, Apr)
April 16, 2020

News Coverage

Joong-Ang Daily

News coverage by Joong-Ang Daily for our paper appeared in Nature Climate Change

Dong-A Daily

News coverage regarding our paper in Nature Climate Change

Mun-Hwa Daily
Kang, H.

Periodic Column in Mun Hwa Daily

Contact Us

  • Address

    School of Civil & Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea

  • Phone


  • Email (Webmaster)
  • Email (Professor)